How To Calculate Electrical Resistance

    Back to Articles Open The Calculator    

To determine the electrical resistance (\( R \)) when resistivity (\( \rho \)), cross-sectional area (\( A \)), and length (\( L \)) are known, use the formula:

\[ R = \dfrac{\rho \cdot L}{A} \]


where:

  • \( R \) is the resistance (in ohms, \( \Omega \)),
  • \( \rho \) is the resistivity (in ohm meters, \( \Omega \cdot \text{m} \)),
  • \( A \) is the cross-sectional area (in square meters, \( \text{m}^2 \)),
  • \( L \) is the length (in meters, \( \text{m} \)).


Problem 1: Resistance of a Steel Wire

Scenario: A steel wire has a resistivity of \( 1.43 \times 10^{-7} \, \Omega \cdot \text{m} \), a length of \( 15 \, \text{m} \), and a cross-sectional area of \( 2 \times 10^{-6} \, \text{m}^2 \). What is the resistance?


Calculation:

1. Given:

  \[ \rho = 1.43 \times 10^{-7} \, \Omega \cdot \text{m} \]

  \[ L = 15 \, \text{m} \]

  \[ A = 2 \times 10^{-6} \, \text{m}^2 \]


2. Substitute into the Resistance Formula:

  \[ R = \dfrac{\rho \cdot L}{A} \]

  \[ R = \dfrac{1.43 \times 10^{-7} \cdot 15}{2 \times 10^{-6}} \]


3. Calculate:

  \[ R = \dfrac{2.145 \times 10^{-6}}{2 \times 10^{-6}} = 1.0725 \, \Omega \]


Answer: The resistance of the steel wire is \( 1.0725 \, \Omega \).


Problem 2: Resistance in a Silver Cable

Scenario: A silver cable has a resistivity of \( 1.59 \times 10^{-8} \, \Omega \cdot \text{m} \), a length of \( 30 \, \text{m} \), and a cross-sectional area of \( 1 \times 10^{-4} \, \text{m}^2 \). Determine its resistance.


Calculation:

1. Given:

  \[ \rho = 1.59 \times 10^{-8} \, \Omega \cdot \text{m} \]

  \[ L = 30 \, \text{m} \]

  \[ A = 1 \times 10^{-4} \, \text{m}^2 \]


2. Substitute into the Resistance Formula:

  \[ R = \dfrac{\rho \cdot L}{A} \]

  \[ R = \dfrac{1.59 \times 10^{-8} \cdot 30}{1 \times 10^{-4}} \]


3. Calculate:

  \[ R = \dfrac{4.77 \times 10^{-7}}{1 \times 10^{-4}} = 4.77 \times 10^{-3} \, \Omega \]


Answer: The resistance of the silver cable is \( 4.77 \times 10^{-3} \, \Omega \).


Problem 3: Resistance of a Carbon Rod

Scenario: A carbon rod has a resistivity of \( 3.5 \times 10^{-5} \, \Omega \cdot \text{m} \), a length of \( 2 \, \text{m} \), and a cross-sectional area of \( 0.5 \times 10^{-4} \, \text{m}^2 \). Calculate its resistance.


Calculation:

1. Given:

  \[ \rho = 3.5 \times 10^{-5} \, \Omega \cdot \text{m} \]

  \[ L = 


2 \, \text{m} \]

  \[ A = 0.5 \times 10^{-4} \, \text{m}^2 \]


2. Substitute into the Resistance Formula:

  \[ R = \dfrac{\rho \cdot L}{A} \]

  \[ R = \dfrac{3.5 \times 10^{-5} \cdot 2}{0.5 \times 10^{-4}} \]


3. Calculate:

  \[ R = \dfrac{7 \times 10^{-5}}{0.5 \times 10^{-4}} = 1.4 \, \Omega \]


Answer: The resistance of the carbon rod is \( 1.4 \, \Omega \).

Report
Reply

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.